What is Magnetic Susceptibility Contrast?

Jeff Duyn

Advanced MRI section, LFMI, NINDS, National Institutes of Health http://www.amri.ninds.nih.gov/index.html

Overview

- What is magnetic susceptibility contrast?
- Observations at high field
- Interpretation
- Clinical Applications

Overview

- What is magnetic susceptibility contrast?
- Observations at high field
- Interpretation
- Clinical Applications

Magnetic Susceptibility = Magnetizability of Object

Paramagnetism: magnetization strengthens field

Diamagnetism: magnetization weakens field

Deoxyhemoglobin

4 irons with 4 unpaired electrons each:

strong paramagnetism

Sources and Mechanisms

Sources	Туре	Effect	Mechanism
Iron/Ferritin, Deoxyhemoglobin, Gadolinium	paramagnetic	Magnetized with field	Unpaired electrons
Myelin	diamagnetic	Magnetized against field	Electron orbits

Magnetic Susceptibility Contrast

BOLD fMRI (~1992)

Sensitivity to the magnetic properties of tissues

Venography (~1998)

General Anatomy (~2000)

magnetization alters field inside and outside object

brain is diamagnetic and alters MRI field

In NMR, field is sensed by proton spins through their precession frequency

frequencies can be measured by observing signal decay after excitation

Multi-Gradient Echo MRI

extracted information

From magnitude images (at least two TE's):

- T_2 *-weighted images
- Spin density $\overline{(M_o)}$
- T_2 * and R_2 *
- decay characterisitics

From phase image(s):

- frequency shift image
- reconstructed magnetic susceptibility;

 T_2^* -w magnitude

T₂*-w magnitude

 R_2^*

Frequency

Susceptibility

Overview

- What is magnetic susceptibility contrast?
- Observations at high field
- Interpretation
- Clinical Applications

High field: Increased proton polarization (SNR) Increased magnetization (CNR)

$$SNR \propto B_0 \cdot \sqrt{\frac{R_1}{R_2^*}}$$

$$CNR \propto B_0 \cdot \sqrt{\frac{R_1}{R_2^*}} \cdot \frac{\Delta R_2^*}{R_2^*}.$$

7T shielded; November 2010

11.7T head-only; November 2011 Currently under repair

magnet	7T shielded	9.4T	10.5T Minnesota	11.7T NIH (head)	11.7T Orsay
Bore ID (mm)	830	900	880	680	900
Diameter (m)	2.4	3.0	3.2	2.7	5.0
Length (m)	2.9	3.7	4.1	3.7	5.2
Weight (t)	36	57	110	60	132

7T shielded

9.4T

10.5T Minnesota

11.7T NIH (head)

Under repair

Under construction

In use In use

Near completion

0.15 T

Young/Bydder, JCAT1987

7 T

NIH, 2007

frequency contrast within grey and white matter

frequency

 $MPRAGE(T_1)$

line of Gennari

optic radiation

-5 HzJH Duyn – NIH fMRI summer course 2013

intra-cortical frequency contrast

 $-5 Hz \qquad 5 Hz$

Overview

- What is magnetic susceptibility contrast?
- Observations at high field
- Interpretation
- Clinical Applications

frequency reflects anatomy

- 1. head of the caudate nucleus;
- 2. putamen;
- 3. globus pallidus
- 4. anterior column, fornix;
- 5. cross-section of the mamillothalamic tract;
- 6. pulvinar
- 7. veins crossing the optic radiations;
- 8. line of Gennari

Duvernoy

MRI phase

There are multiple contributors to magnetic properties of brain

deoxyhemoglobin:
Paramagnetic
(increases field)

myelin (lipids):

Diamagnetic (decreases field)

iron (ferritin):

Paramagnetic (increases field)

Correlative MRI-Histology

Cortex

chemical extraction of tissue iron

Investigation of magnetic susceptibility contrast across cortical grey matter and white matter

M. Fukunaga^{1,2}, P. van Gelderen¹, J. Lee¹, T-Q. Li¹, J. A. de Zwart¹, H. Merkle¹, K. M. Matsuda³, E. Matsuura⁴, and J. H. Duyn¹

Advanced MRI section, LFMI, NINDS, National Institutes of Health, Bethesda, MD, United States, ²Biofunctional Imaging, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan, ³Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, MD, United States, ⁴Laboratory of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, MD, United States

Fig. 3 Iron Myelin

Source of susceptibility contrast in human brain

Tissue	R ₂ *	Frequency	Explanation
Venous Vasculature, Hemorrhages	increased	positive	deoxy- hemoglobin
Basal Ganglia, Red Nucleus	increased	positive	iron (ferritin)
Cortical layers: infra granular, Gennari, Purkinje	increased	positive	iron (ferritin)
Grey versus sub-cortical white matter	variable	generally positive	myelin and iron
MS Lesion	variable	variable	myelin, iron, deoxyhemoglo bin
Fiber bundles	increased if angled with field	negative if angled with field	myelin, microstructure, orientation

Source of susceptibility contrast in human brain

 R_2 *

DTI

frequency

DTI map

Orientation dependence of R2*

allows mapping of major fiber bundles

 T_2^* -based fiber orientation mapping

Neuroimage 2011

Jongho Lee a,b,*, Peter van Gelderen a, Li-Wei Kuo a, Hellmut Merkle a, Afonso C. Silva c, Jeff H. Duyn

Orientation dependence of R₂*and frequency

white matter is highly structured at various scales

wikipedia.org

2 nunometer

yellowtang.org

susceptibility of myelin sheet is anisotropic

frequency

compartment-specific frequency shifts

frequency

Simulated Signal Decay

comparison with marmoset data

 χ_{\parallel} - χ_{\perp} = -0.022 ppm Supportive of compartmental origin of components!

Overview

- What is magnetic susceptibility contrast?
- Observations at high field
- Interpretation
- Clinical Applications

Amyotropic Lateral Sclerosis

Multiple Sclerosis

Yao et al, Radiology 2012

Yao et al , Radiology 2012; Bagnato et al, Brain 2011

Multiple Sclerosis

subset of "ring lesions" enhance on Gad-MRI

Sati, Reich et al, NINDS

Multi-Component Complex Fitting of GRE Decay Curve

separation of myelin, axonal and interstitial water

$$S = A_1 e^{(-R_1 + i\Delta f_1)t} + A_2 e^{(-R_2 + i\Delta f_2)t} + A_3 e^{(-R_3 + i\Delta f_3)t}$$

control

MS

Sati et al., Neuroimage 2013

Summary

- Susceptibility contrast provides rich anatomical contrast in human brain MRI that increases with field strength
- Single scan allows one to extract various parameters (and contrasts)
- Reports on myelin and iron content
- Microstructural compartments have distinct decay characteristics
- Potentially allows one to extract micro-structural information

Recommended reading

- Duyn et al: PNAS 2007
- He/Yablonskiy: PNAS 2009
- Wharton/Bowtell: PNAS 2012
- Duyn: Journal of Magnetic Resonance 2013
- Sati et al: Neuroimage 2013